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A B S T R A C T   

Why would concepts seem to grow when their instances become rare? Human observers can respond to decreases 
in stimulus prevalence by expanding their conceptual boundaries of those stimuli. This prevalence-induced concept 
change may have serious social consequences, since many real-world detection tasks demand consistent judg
ments over time. The current work aims to identify the computational process that produces prevalence-induced 
concept change. I review some plausible models from the cognitive and social sciences that could account for this 
phenomenon, and then use trial-level computational modeling to see how well each model predicts actual human 
data, finding that they are best explained as a range-frequency compromise in judgment. Finally, I test an 
intervention that successfully eliminates prevalence-induced concept change by making stimuli more intense as 
they become rare.   

1. Introduction 

How do subjective judgments of stimuli change as they become more 
or less common? Levari et al. (2018) documented a peculiar trend in 
judgments of colors, threatening faces, and moral violations – as stimuli 
in those categories decreased in prevalence, human observers expanded 
their boundaries to include a wider range of stimuli. For example, when 
the prevalence of blue dots (relative to non-blue dots) was reduced from 
50% to 6%, participants began identifying colors as blue that they had 
previously judged to be non-blue. Conversely, when the prevalence of 
blue dots was increased, participants narrowed the range of colors they 
identified as blue. Adjusting perceptions and judgments based on 
available resources is an adaptive behavior seen in many domains and 
animal species (e.g. Hayden, 2018; McNair, 1982; Wolfe, 2013). How
ever, the phenomenon Levari and coauthors examined, which they 
called prevalence-induced concept change, has troubling implications for 
domains in which consistency is important. As the authors suggested, 
“…[when] yellow bananas become less prevalent, a shopper’s concept 
of ‘ripe’ should expand to include speckled ones, but when violent 
crimes become less prevalent, a police officer’s concept of ‘assault’ 
should not expand to include jaywalking.” 

If prevalence-induced concept change is sometimes undesirable, can 
it be prevented? Levari et al. (2018) attempted several experimental 

interventions to reduce or eliminate the phenomenon in judgments of 
color. In one study, they warned participants in advance about the 
prevalence change in the study. In another, they explicitly asked par
ticipants to stay consistent over time in their judgments, and not to 
change which colors they called blue. Another study offered financial 
incentives for participants who could stay consistent over time. Finally, 
the experimenters tried decreasing the prevalence of blue dots abruptly 
instead of gradually, to make it more noticeable. None of these in
terventions were successful, perhaps in part because the mechanism 
driving the phenomenon was unknown. In this paper, I use trial-level 
computational modeling (Daw, 2011) to search for a mechanism that 
predicts and explains prevalence-induced concept change. I then use the 
results of that model to design a new intervention to reduce or eliminate 
the effect. 

1.1. Overview 

What computational mechanism could produce prevalence-induced 
concept change? Levari and coauthors (2018) speculated that the phe
nomenon was driven by contextual comparisons, in which observers 
compared the intensity of the current stimulus to recently seen stimuli. 
Such a comparison would lead participants to judge a dot as more blue 
when it was preceded by very non-blue dots (low prevalence) than when 
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preceded by very blue dots (high prevalence). Psychologists, neurosci
entists, and economists have extensively studied these kinds of contex
tual influences on human judgment and perception (Bhui, Lai, & 
Gershman, 2021; Schwartz, Hsu, & Dayan, 2007; Spektor, Bhatia, & 
Gluth, 2021; Summerfield & de Lange, 2014). In this section, I will re
view a few potential mechanisms drawn from prior research on 
contextual effects in judgment and perception that predict behavioral 
effects similar to prevalence-induced concept change. 

1.1.1. Bayesian models of perception and judgment 
Cognitive scientists have done extensive work exploring which 

mental operations in the brain can be better understood with Bayesian 
models of cognition (Griffiths, Kemp, & Tenenbaum, 2008). In such 
models, the brain uses prior knowledge from past events to inform 
perceptions, predictions, and judgments. Some classic exercises in 
Bayesian inference use prevalence to illustrate how prior knowledge can 
usefully improve predictions. In one example, the “cab problem” 
(Birnbaum, 1983), accurately weighting eyewitness testimony about the 
color of a taxicab involved in a hit-and-run accident requires consider
ation of the base rates of different colors of cars. 

In one simple version of Bayesian probability estimation, imagine 
that an observer is trying to guess the probability that a given dot is blue. 
The prior used to update the posterior probability that the dot is blue is 
the current base rate of blue dots. When blue dots are rare, the prior goes 
down, as does the posterior probability. As a result, observers should be 
biased against finding more blue dots – a reversal of the typical 
prevalence-induced concept change effect. However, some Bayesian 
models of perception and judgment are more compatible with Levari 
et al.’s findings. In a second kind of model, imagine an observer who 
attempts to infer the color of a dot by comparing it to the average color 
of dots in the environment, and who uses some form of Bayesian 
updating to adapt their estimation of that average to better match 
recently seen dots. Such models (e.g. Wei & Stocker, 2015) would pre
dict, as Levari et al. (2018) find, that observers are more likely to call 
dots blue when bluer dots become rare. Similarly, models of Bayesian 
learning that use beta distributions to inform inferences about color 
boundaries based on binomial outcomes (e.g. J. Feldman, 2021) could 
also account for such effects, by biasing inferences towards previously 
common intermediate colors, rather than rare and extreme colors. 

1.1.2. Sensory aftereffects and value adaptation 
Repulsive aftereffects are a celebrated phenomenon in vision 

research, in which perceptions of stimuli are biased away from the 
average of recently seen stimuli. Prolonged exposure to photographs of 
artificially widened faces causes normal faces to temporarily seem too 
narrow (Rhodes, Jeffery, Watson, Clifford, & Nakayama, 2003). Similar 
effects have been documented for colors (Webster, 1996), motion 
(Anstis, Verstraten, & Mather, 1998; Mather, Pavan, Campana, & Casco, 
2008), and spatial orientation (Paradiso, Shimojo, & Nakayama, 1989), 
though there are also extensive examples of the opposite phenomenon, 
sometimes called an attractive aftereffect or positive serial dependency 
(e.g. Cicchini, Mikellidou, & Burr, 2017; Fornaciai & Park, 2018; Man
assi, Liberman, Kosovicheva, Zhang, & Whitney, 2018), as well as a 
growing understanding of what drives these opposing effects in seem
ingly similar contexts (e.g. Fritsche, Mostert, & de Lange, 2017). Prev
alence effects in subjective judgment could be driven by the same 
mechanisms that produce repulsive aftereffects, a possibility raised by 
Vickers and Leary (1983) and foreshadowed by Adaptation-level Theory 
(Helson, 1964). One such candidate mechanism is normalization 
(Heeger, 1992), a computation in which input to a given neuron is 
divided by the pooled activity of similarly tuned neurons. Normalization 
has been used to successfully explain contextual effects in vision (Car
andini, Heeger, & Movshon, 1997) as well as choice and valuation 
(Louie, Khaw, & Glimcher, 2013; Webb, Glimcher, & Louie, 2020), and 
is often considered an important example of efficient coding in neural 
architecture (Attneave, 1954; Barlow, 2001), because storing the 

differences between values eliminates redundancies compared to storing 
the values themselves. 

1.1.3. Range-frequency theory 
Prevalence-induced concept change is also in line with the pre

dictions of Range-Frequency Theory (Parducci, 1963, 1965), which 
describes the influence that particular distributions of stimuli can have 
on judgments of those stimuli. As applied to categorical judgments 
(Parducci & Wedell, 1986), it posits that the boundaries between cate
gories (e.g. “yes/no”, “blue/purple”, a 5 point Likert scale) are implicitly 
constructed by two contextual factors that influence the subjective value 
of stimuli. The first factor is range, or the minimum and maximum 
stimulus values present. The second factor is frequency, or the distribu
tion of other stimulus values present in the observer’s current context. 
Subjective judgments are influenced by a weighted compromise be
tween these two factors. 

Range-Frequency Theory (RFT) is often used to model the behavior 
of observers either at a low frequency or a high frequency, but less often 
of observers transitioning between these states. The prevalence manip
ulation employed in Levari et al. (2018) directly manipulated what RFT 
would call the frequency parameter, or the prevalence of stimuli. By 
contrast, the range of possible stimuli was fixed in each experimental 
session. In such a scenario, RFT predicts that as the frequency of stimuli 
decreases, the subjective intensity of a given stimulus should increase, 
because its rank intensity (e.g. whether it is the 5th or the 50th most 
intense stimulus seen recently) is now greater than it was when the 
frequency was high. In the case of deciding whether a dot is blue or 
purple, as blue dots become more rare, a given blue dot should seem 
relatively more blue than it did previously. This is because that dot is 
now more blue than other recently seen dots, compared to when blue 
dots were common. 

1.1.4. Adjudicating between different computational models 
In trial-level computational modeling (Daw, 2011; Wilson & Collins, 

2019), each model under consideration is expressed with an algorithm 
that can generate a response on each trial of a task. These responses and 
the likelihood function that generated them are then compared to actual 
human responses. The goal is to determine which model among those 
being compared most accurately describes real human behavior on each 
individual trial of the task, rather than in aggregate behavior of groups 
of participants. This approach is particularly useful when comparing 
similar models, as is the case here, since the models described above can 
all predict prevalence effects that broadly match the direction of those 
found in Levari et al. (2018). The potential similarity of these models’ 
predictions also makes it important to determine whether they can be 
reliably distinguished using a computational model comparison. This 
danger can be reduced with model-recovery simulations (e.g. Edmunds, 
Milton, & Wills, 2018), in which each model being compared is used to 
simulate responses, which are then fit by each model in turn. Ideally, 
each model is able to fit “recover” its own simulated responses better 
than the other models, making misleading conclusions based on 
computational modeling methods less likely. 

2. Study 1: Replication of Levari et al. (2018) study 1 

2.1. Overview 

In a direct replication of Levari et al. (2018) Study 1, I recruited an 
online sample of participants to view a series of dots on a computer 
screen and identify each dot as either blue or not blue. After many trials, 
the prevalence of blue dots decreased for some participants. I then used 
trial-level computational modeling to see which of several candidate 
mechanisms best predicted the actual human data in the study. This and 
all subsequent studies were preregistered on AsPredicted.org (see Sup
plementary Materials for link), and approved by the Harvard University 
Committee on the Use of Human Subjects. Informed consent was 
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provided by all participants. 

2.2. Methods 

2.2.1. Participants 
Participants were 47 users of the online survey platform Amazon 

Mechanical Turk, recruited via CloudResearch.com (Litman, Robinson, 
& Abberbock, 2017) (24 males, 22 females, 1 prefer not to answer, Mage 
= 42.28 years, SD = 13.61 years) who were paid $3 USD for their 
participation. Minimum required sample size in this and all studies was 
determined using the R package simr (Green & MacLeod, 2016) to reach 
90% statistical power to detect effects comparable to those reported in 
Levari et al. (2018). 

2.2.2. Procedure 
Participants were told that a series of colored dots would appear on 

the screen, one at a time, and that their task was to decide whether each 
dot was blue or not blue, and to indicate their decision by pressing one of 
two keys on the keyboard (“f” for not blue, “j” for blue). 

On each trial, a colored dot appeared on a solid gray background. 
The color of the dot varied across trials from very purple (61% blue, RGB 
99–0-155) to very blue (100% blue, RGB 0–0-254). Each dot appeared 
on the screen for 500 milliseconds and was then replaced by a question 
mark, which remained on the screen until participants pressed one of the 
response keys. Participants were told that there would be 800 trials 
divided into 16 blocks, and that the prevalence of blue dots might vary 
across blocks. Specifically, they were told that some blocks “may have a 
lot of blue dots, and others may have only a few.” Participants completed 
10 practice trials to ensure they understood the procedure, and then 
completed 800 test trials. To help participants remain attentive, I 
allowed them to take a brief break every 50 trials. Stimulus presentation 
was programmed using jsPsych (de Leeuw, 2015). 

I created two conditions by dividing the color spectrum into two 
halves that I will refer to as the “purple spectrum” (RGB 99–0-155 
through RGB 51–0-204) and the “blue spectrum” (RGB 50–0-205 
through RGB 0–0-254). Half the participants were randomly assigned to 
the stable condition. In this condition, I determined the color of the dot 
shown on each trial by randomly sampling the two spectra with equal 
probability from a uniform distribution. I will refer to the probability 
that a dot was sampled from the blue spectrum as the signal prevalence. In 
the stable condition, the signal prevalence on trials 1–800 was 50%. The 
remaining participants were assigned to the decreasing condition. In this 
condition, I sampled the two spectra with unequal probability on some 
trials. Specifically, in the decreasing condition the signal prevalence was 
50% on trials 1–200; 40% on trials 201–250; 28% on trials 251–300; 
16% on trials 301–350; and 6% on trials 351–800. After completing the 
identification task, participants completed a questionnaire asking some 
basic demographics and their impressions of the task. The complete text 
of the task instructions and all questions is available in Supplemental 
Appendix A. 

2.3. Results 

Following my preregistration, I did not exclude any participants from 
my analysis. To find out whether the decrease in the prevalence of blue 
dots cause participants to call a wider range of colors blue, I fit a bino
mial generalized linear mixed model to my data in R (R Core Team, 
2020) using the package lme4 (Bates, Mächler, Bolker, & Walker, 2015). 
The dependent variable was the participant’s identification of a dot as 
blue or not blue. The independent between-participants variable was the 
participant’s condition (stable or decreasing). The independent within- 
participants variables were (a) the dot’s RGB value or what I will call 
its actual color (which ranged from 60% blue to 100% blue, coded as 1- 
100) and (b) the trial number (which ranged from 1 to 800). I included 
condition, trial number, and actual color (and all interactions between 
them) as fixed effects in my model. I included a random intercept term 

for participants (who may have entered the study with different 
thresholds) and allowed slopes to vary randomly across trial number for 
each participant (since responses over time may change in different 
directions or by different amounts from participant to participant). The 
inclusion of random intercepts significantly improved model fit relative 
to the baseline model, χ2(2) = 594.43, p < 0.001, as did the inclusion of 
random slopes, χ2(2) = 292.37, p < 0.001. Additionally, the inclusion of 
the three-way interaction between condition, trial number, and actual 
color significantly improved model fit, χ2(1) = 191.10, p < 0.001. 

The generalized linear mixed model revealed that a Condition X 
Actual Color X Trial Number interaction predicted participants’ identi
fications, b = 14.80, SE = 0.88, z = 16.75, p < 0.001, 95% CIb [13.07, 
16.53], RGLMM(c)

2 = 0.86. Fig. 1 shows the percentage of dots at each 
point along the continuum that participants identified as blue on the 
initial 200 trials and on the final 200 trials. The two curves in the left 
panel are nearly perfectly superimposed, indicating that participants in 
the stable condition were just as likely to identify a dot as blue when it 
appeared on an initial trial as when it appeared on a final trial. But the 
two curves in the right panel are offset, indicating that participants in 
the decreasing condition were more likely to identify dots as blue when 
those dots appeared on a final trial than when those dots appeared on an 
initial trial. In other words, when the prevalence of blue dots decreased, 
participants called a wider range of colors blue. 

3. Computational modeling of prevalence-induced concept 
change 

Here I report a computational modeling approach to prevalence- 
induced concept change in color judgment, in which several possible 
cognitive mechanisms for the phenomenon are compared to see which 
model best predicts the behavioral results from Study 1. Aside from the 
first model, which serves as a control, each model I test employs some 
way of using local prevalence to update either the observer’s categorical 
boundary between colors, or the subjective evaluation of color in
tensities. I first use each model to simulate data in the color identifica
tion task in Study 1, and test whether each model can not only 
accurately estimate the true simulation starting parameters, but also 
recover its own simulated responses better than the other models. Then, 
I fit each model to the data from Study 1, using Bayesian Model Selection 
to determine which model best accounts for actual human responses in 
the task. 

3.1. Model specifications 

3.1.1. Model 1: Normal CDF 
This model serves as a control since it has no ability to adapt sub

jective intensity of stimuli or threshold values between categories. It 
implements a kind of classic psychophysical categorical perception (e.g. 
Decarlo, 2013; Feldman, Griffiths, & Morgan, 2009), in which the 
probability that the intensity x of the current stimulus exceeds the in
tensity τ is determined by a normal cumulative distribution function 
(CDF), where x is the intensity of the current stimulus and σ is the 
standard deviation: 

P(x > τ) = Φ
(x − τ

σ

)
(1.1) 

The decision rule as to whether a given color x belongs to concept C 
(blue or not blue) is governed by the following probabilities: 

P(C|x) =

⎧
⎪⎨

⎪⎩

Φ
(x − τ

σ

)
if C = blue

1 − Φ
(x − τ

σ

)
if C = not blue

(1.2) 

The free parameters in the model are τ (the decision threshold) and σ 
(the standard deviation of the normal CDF). 
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3.1.2. Model 2: Bayesian MAP Estimator 
The second model builds on the basic model by implementing dy

namic updating of the decision threshold through Bayesian maximum a 
posteriori (MAP) estimation (Griffiths & Yuille, 2008). In this model, the 
agent is attempting to infer the posterior probability around the 
threshold τ given the most recent observed trial xi: 

P(τ|xi) = P(xi|τ)P(τ) (2.1) 

P(τ), the prior, is defined as a normal probability distribution func
tion with starting mean of τ0 and deviation of σ, or the initial starting 
threshold and variance values that the observer enters the task with. P 
(xi|τ) is the likelihood of observing the current color given τ, in this case 
via a normal distribution with mean τ and standard deviation σ at value 
xi. The entire posterior probability can be reformulated as follows: 

P(τ|xi) = N
(
x; τi, σ2) N

(
τ; τi− 1, σ2) (2.2) 

Once this posterior probability P(τ|xi) is obtained, the maximum 
value τ is estimated from the posterior normal probability distribution 
function: 

τ = max
(
N

(
xi; τ, σ2) ) (2.3) 

This value is then passed to the normal CDF function as implemented 
in Model 1 (Eqs. (1.1) and (1.2)), in order to classify the current color 
depending on whether it is greater or less than τ. The free parameters in 
the model are τ0 (the initial decision threshold), and σ (the standard 
deviation of the normal CDF). 

3.1.3. Model 3: Range-Frequency model 
This model fixes τ and σ at their initial starting values, and attempts 

to determine the subjective intensity yi of the current stimulus xi within 
the local context k of recently observed values (x1, …,xn). The subjective 
intensity is calculated with the range (minimum and maximum values of 
x) and frequency (the ordinal rank of the current stimulus within all 
values in k). The tradeoff between the influence of range and frequency 
on yi is determined by the weighting parameter w. 

yik = w
[

xi − xmin,k

xmax,k − xmin,k

]

+(1 − w)
[

rankik − 1
nk − 1

]

(3.1) 

The subjective color value yik is then passed to the normal CDF 
function as implemented in the basic model (Eqs. (1.1) and (1.2)), where 
it serves as the intensity of the current stimulus (x). The free parameters 
in the model are nk (the maximum number of trials included in the local 

context k), τ0 (the decision threshold) and σ (the standard deviation of 
the normal CDF). In this implementation, the range-weighting param
eter w is fixed at 0.5.1 

3.1.4. Model 4: Moving Window 
This model attempts to adapt the categorizations of a normal CDF to 

local context by updating the decision threshold τ using recently seen 
trials. Specifically, the current threshold τi is an incremental update of 
the previous threshold τi-1 updated based on an exponentially-weighted 
moving average of past trials: 

τi = τi− 1 +α(xi− 1 − τi− 1) (4.1)  

where τi is the current threshold, τi-1 is the estimated threshold from the 
previous trial, α is a scaling parameter reflecting how much to update 
the current threshold based on past information (similar to a learning 
rate in reinforcement learning), and x is the observed color on a given 
trial. The current threshold value is then passed to the normal CDF 
function as implemented in Model 1 (Eqs. (1.1) and (1.2)), in order to 
classify the current color depending on whether it is greater or less than 
τ. The free parameters are α (the learning rate), τ0 (the initial decision 
threshold), and σ (the standard deviation of the normal CDF). 

3.1.5. Model 5: Adaptive value coding 
This model implements a simplified value normalization algorithm 

(Khaw, Glimcher, & Louie, 2017). It updates the subjective value of the 
currently observed stimulus, rather than the decision threshold used to 
identify stimuli. The value of the stimulus x on the current trial i is 
divided by a summation of the values of the past n trials indexed by k, 
times a scaling parameter α. This value is then scaled by factor K, which 
represents gain. 

Fig. 1. Results of Study 1. 
The x axis shows the dot’s objective color, and the y axis shows the percentage of trials on which participants identified that dot as blue. Fitted lines were computed as 
binomial GLMs. 

1 I fixed the range-weight at 0.5 to reduce model complexity. To check that 
this was a reasonable choice in model fitting, I also implemented a modified 
version of Model 3 that added range-weight as a free parameter that was 
separately estimated for each participant. Using this model, the median range- 
weight for participants in Study 1 was 0.47 (mean = 0.41, SD = 0.17). Further, 
Model 3 (with range-weight fixed at 0.5) strongly outperformed the modified 
model when fit to the data from Study 1. In other words, adding range-weight 
as a free parameter did not improve Model 3’s ability to predict actual behavior. 
This is likely because range-weight did not vary strongly between subjects, and 
because of the increased model complexity from adding an additional param
eter, which is penalized in Bayesian Model Selection. 
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yi = K
xi

1 + α
∑n

k=1xi− k
(5.1) 

The subjective color value yi is then passed to the normal CDF 
function as implemented in Model 1 (Eqs. (1.1) and (1.2)), where it 
serves as the intensity of the current stimulus (x). The free parameters in 
the model are n (the maximum number of trials included in the local 
context), α (the contextual scaling parameter), τ (the decision 
threshold), and σ (the standard deviation of the normal CDF). Following 
Louie et al. (2013), the gain parameter K is fixed at 100 to generate 
plausible subjective intensity values that can be passed to the normal 
CDF function. 

3.1.6. Model 6: Range-only model 
This model implements the range component of Range-Frequency 

theory from Eq. (3.1), with no tradeoff parameter (since there is no 
frequency component present). 

yik = w
[

xi − xmin,k

xmax,k − xmin,k

]

(6.1) 

The subjective color value yik is then passed to the normal CDF 
function as implemented in Model 1 (Eqs. (1.1) and (1.2)), where it 
serves as the intensity of the current stimulus (x). The free parameters in 
the model are nk (the maximum number of trials included in the local 
context k), τ (the decision threshold), and σ, (the standard deviation of 
the normal CDF). 

3.1.7. Model 7: Frequency-only model 
This model implements the frequency component of Range- 

Frequency theory from Eq. (3.1), with no range-weight parameter 
(since there is no range component present). 

yik =

[
rankik − 1

nk − 1

]

(7.1) 

The subjective color value yik is then passed to the normal CDF 
function as implemented in the Model 1 (Eqs. (1.1) and (1.2)), where it 
serves as the intensity of the current stimulus (x). The free parameters in 
the model are nk (the maximum number of trials included in the local 
context k), τ (the decision threshold), and σ (the standard deviation of 
the normal CDF). 

3.1.8. Model 8: Beta-Binomial model 
This model implements dynamic updating of the decision threshold 

via Bayesian learning with a Beta-Binomial model (e.g. Feldman, 2021; 
Stankevicius, Huys, Kalra, & Seriès, 2014). In this model, as in Model 2, 
(Eq. (2.1)), the agent is attempting to infer the posterior probability 
around the threshold τ given the most recent observed trial xi. P(τ), the 
prior, is defined as a beta distribution with parameters A and B: 

P(τ) = 1
B(A,B)

xA− 1(1 − x)B− 1 (8.1) 

This prior is conjugate to the binomial likelihood and has starting 
values of A0 and B0, representing initial evidentiary strength for blue and 
purple trials, respectively. The posterior probability P(τ|xi) is also a beta 
distribution, in which either A or B is incremented by 1 on each trial, 
depending on whether the most recent dot was classified as blue or 
purple, respectively. 

The maximum value τ is estimated from the posterior beta distri
bution, and then passed to a normal CDF function as implemented in 
Model 1 (Eqs. (1.1) and (1.2)), in order to classify the current color 
depending on whether it is greater or less than τ. The free parameters in 
the model are A0 (the initial A value), and B0 (the initial B value), and σ 
(the standard deviation of the normal CDF). 

3.2. Generation of simulated data 

Data for 20 simulated agents in the color identification task from 
Study 1 were generated in MATLAB from each of the eight models being 
tested. The true parameters for each agent were randomly sampled from 
uniform distributions. In Models 1–7, τ/τ0 were sampled from the uni
form distribution from 0.001 to 100, denoted as U(0.001,100), as was σ 
in Models 1–8. In the Moving Window and Adaptive Value Coding 
models, α was sampled from U(0.001,1). In the Moving Window, Range- 
Frequency, Adaptive Value Coding, Range Only, and Frequency Only 
models, n/nk was sampled from U(1,90). In the Beta-Binomial model, A0 
and B0 were each sampled from U(0.01,100).2 Each agent completed 
800 trials. I then used a trial-level model fitting procedure (Daw, 2011) 
with maximum likelihood estimation to recover the true generative 
model and parameters of the simulated data. 

3.3. Recovery of simulated data 

Optimized parameters for each simulated agent were estimated with 
the MATLAB package mfit (Gershman, 2015). Five starting values were 
uniformly sampled for each parameter, with the same bounds as used for 
data generation (described above). 

To test the ability of each model to recover its own simulated re
sponses, I calculated a protected exceedance probability for the simu
lated responses from each of the eight models, fit in turn by each of the 
eight models (a total of 64 model fits). The protected exceedance 
probability is a value from Bayesian Model Selection (Rigoux, Stephan, 
Friston, & Daunizeau, 2014) quantifying the likelihood that one model is 
present in a population more frequently than other models being 
compared. I used the mfit package to estimate the protected exceedance 
probability with the Laplace approximation of the marginal likelihoods 
of the fitted models. Responses simulated from each model were fit in 
turn by each of the eight models. As Table 1 shows, each model per
formed best at fitting the responses generated by its own algorithm in 
the Decreasing Prevalence condition, with the exception of the Beta- 
binomial model, suggesting that most of these models would be distin
guishable when fitting them to actual human data. 

As expected, several models were not reliably distinguishable from 
one another in the Stable Prevalence condition (see Supplemental Ap
pendix B). This is not surprising, given that Models 2 through 8 are 
designed to simulate how responses might shift in response to changes in 
the stimulus distribution, which do not occur in the control condition. 

I also used each model to estimate the parameters for each of the 
twenty simulated participants. The models were reasonably accurate at 
estimating the true parameters of the simulated agents from that 
generative model (rmean = 0.76), with the exception of the Beta-binomial 
model (r = 0.37). Taken together with the Bayesian model selection for 
the simulated data, this result suggests that the predicted responses 
generated by seven of the eight models tested here are distinct, and that 
approximate recovery of those generative models, as well as estimation 
of the model parameters for each individual agent, is feasible. Note that 
the results of the model comparison procedure reported in Section 3.5 
below persist whether or not the Beta-binomial model, which performed 
poorly in model and parameter recovery, is included. 

3.4. Parameter estimation for actual human data 

Optimized parameters for all 47 human subjects from Study 1 were 
again estimated using mfit. Five uniformly sampled starting values were 
used for each parameter. The sampling distributions for each parameter 
were the same as in the simulation and recovery procedure described in 

2 Raising the maximum values of A0 and B0 in the Beta-binomial model from 
100 to 10,000 did not improve model performance or parameter recovery 
accuracy. 
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Section 3.2. For all models, uniform priors were set on each parameter. 

3.5. Model comparison for human subjects 

I used Bayesian Model Selection as implemented in the mfit package 
in order to compare the models to see which predictions best fit actual 
human data. The Range-Frequency model strongly outperformed the 
other models in fitting the data, both across all subjects, pxp = 0.79, 
BOR < 0.0001,3 and within the Decreasing Prevalence condition, pxp =
0.98, BOR < 0.0001, as shown in Fig. 2. Aggregating BIC values as an 
alternative form of model comparison produced the same pattern of 
results. 

As expected, the Normal CDF model performed best in the Stable 
Prevalence condition, pxp = 0.99, BOR < 0.0001, likely because there 
was no prevalence shift for these participants to be modeled, and 
Bayesian Model Selection penalizes other models with added 
complexity. Fig. 3 shows the choice behavior of each model in the 
Decreasing Prevalence condition of Study 1. Unlike the Normal CDF 
model, the Range-Frequency model exhibited a shift in decision 
thresholds in the decreasing prevalence condition, similar to actual 
human subjects. 

3.6. Discussion 

Several mechanisms from cognitive psychology and neuroscience 
could plausibly explain the phenomenon of prevalence-induced concept 
change. Here I attempted to use trial-level computational modeling of 
human data from Study 1 to adjudicate between them. Of the models 
tested here, Range-Frequency Theory best predicted the judgments of 
actual human subjects in response to a prevalence decrease. 

Can the knowledge that Range-Frequency Theory approximates 
prevalence-induced concept change inform new interventions to help 
prevent it? Perhaps the most obvious strategies to do so would involve 
manipulating either the range parameter, the frequency parameter, or 
both. Manipulating the frequency parameter in some way to offset a 
prevalence shift would be difficult, because the very nature of a preva
lence shift is that it changes the rank of a given stimulus relative to the 
local context. Manipulating the range of stimuli seems more feasible, 
and the high-frequency bursts of “target items” that have been used to 
compensate for the Low Prevalence Effect in airport baggage screeners 
(Wolfe, Brunelli, Rubinstein, & Horowitz, 2013) offer a strategy to 
emulate when designing such interventions. Study 2 was designed to 
leverage Range-Frequency Theory to reduce or eliminate prevalence- 
induced concept change in this fashion. 

4. Study 2: Using range extension to eliminate prevalence- 
induced concept change 

4.1. Overview 

The computational modeling procedure for Study 1 suggests that 
Range-Frequency Theory predicts the prevalence-induced concept 
change exhibited by participants. How could this effect be counteracted? 
Subjective value of a stimulus in Range-Frequency Theory is determined 
by a weighted average of the stimulus’s intensity compared to the most 
and least extreme stimuli seen (the “range”) and its rank intensity 
compared to all the other stimuli seen (the “frequency”). In this model, 
prevalence-induced concept change occurs because decreasing the fre
quency of stimuli increases the rank of ambiguous stimuli by compari
son. It is possible that this effect could be counteracted by increasing the 
maximum stimulus intensity – using the range extension to offset the 
frequency decrease. Study 2 was designed to test this prediction and 
hopefully reduce or eliminate prevalence-induced concept change. 

4.2. Methods 

4.2.1. Participants 
Participants were 110 users of the online survey platform Amazon 

Mechanical Turk, recruited via CloudResearch.com (59 males, 51 fe
males, Mage = 37.66 years, SD = 11.27 years) who were paid $2 USD for 
their participation. 

4.2.2. Procedure 
As in Study 1, participants were told that a series of colored dots 

would appear on the screen, one at a time, and that their task was to 
decide whether each dot was blue or not blue, and to indicate their 
decision by pressing one of two keys on the keyboard (“f” for not blue, 
“j” for blue). 

On each trial, a colored dot appeared on a solid gray background. 
The color of the dot varied across trials from very purple (61% blue, RGB 
98–0-156) to very blue (100% blue, RGB 0–0-254). Each dot appeared 
on the screen for 500 milliseconds and was then replaced by a question 
mark, which remained on the screen until participants pressed one of the 
response keys. Participants were told that there would be 400 trials 
divided into 8 blocks, and that the prevalence of blue dots might vary 
across blocks. Specifically, they were told that some blocks “may have a 
lot of blue dots, and others may have only a few.” Participants completed 
10 practice trials to ensure they understood the procedure, and then 
completed 400 test trials. To help participants remain attentive, I 
allowed them to take a brief break every 50 trials. 

Participants were randomly assigned to one of four conditions in a 2 
(prevalence: stable or decreasing) x 2 (range: fixed or extending) design. As 
in Study 1, I divided the dots participants could see into two spectra. The 
prevalence condition determined what proportion of dots participants 
saw from each of those sections. Participants in the stable prevalence 
conditions saw dots that had an equal probability (50%) of being drawn 

Table 1 
Recovery of simulated data in the Decreasing Prevalence condition of Study 1.   

Model used to fit responses 

Normal CDF MAP Range-Frequency Window AVC Range only Frequency only Beta Binomial 

Model used to generate responses 

Normal CDF 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
MAP 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 
Range-Frequency 0.00 0.00 0.91 0.05 0.00 0.01 0.01 0.00 
Window 0.00 0.00 0.02 0.98 0.00 0.00 0.00 0.00 
AVC 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 
Range only 0.00 0.00 0.01 0.00 0.00 0.98 0.00 0.00 
Frequency only 0.01 0.00 0.00 0.00 0.00 0.00 0.98 0.00 
Beta Binomial 0.01 0.08 0.02 0.81 0.01 0.01 0.03 0.01 

Protected exceedance probabilities in model comparison for each fitted model (columns) and the actual generative model of the simulated data (rows) in the 
Decreasing Prevalence condition. Highest values for each model are bolded. 

3 In Bayesian Model Selection, the Bayesian omnibus risk (BOR) reflects the 
likelihood that the models being compared are all equally frequent in the 
population. 
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from the “blue” or “purple” sections of the color spectrum on all 400 
trials. Participants in the decreasing prevalence conditions also saw a 50% 
prevalence of blue dots for the first 200 trials, but for trials 201–400, 
instead only saw a 10% prevalence of blue dots. 

For the first 200 trials, all participants saw dots from a “narrow” blue 
spectrum, RGB 78–0-176 (69% blue) through RGB 50–0-204 (80% 
blue). The range condition determined the upper range of colors par
ticipants saw in the final 200 trials of the study. Starting on trial 201, 
participants in the extending range conditions saw dots from a “wide” 
blue spectrum, from RGB 78–0-176 (69% blue) through RGB 0–0-254 
(100% blue). Participants in the fixed range conditions instead continued 
to see dots from the “narrow” blue spectrum. After completing the task, 
participants completed a questionnaire asking some basic demographics 
and their impressions of the task. The complete text of the task in
structions and all questions is available in Supplemental Appendix A. 

4.3. Results 

Following my preregistration, I excluded eight participants whose 
individual responses could not be fit to a gaussian CDF with free pa
rameters for threshold and sensitivity, suggesting inattention or random 
button pressing. Importantly, the results reported in this section do not 
change whether or not these participants are included in the analysis. 

Did extending the range of colors reduce the typical effect of the 
prevalence decrease? To find out, I fit a binomial generalized linear 
mixed model to my data in R using the package lme4. The dependent 
variable was the participant’s identification of a dot as blue or not blue. 
The independent between-participants variables were the participant’s 
assigned prevalence (stable or decreasing) and range (fixed or extending). 
The independent within-participants variables were (a) the dot’s RGB 
value or what I will call its actual color (which ranged from 61% blue to 
100% blue, coded as 0-100) and (b) the trial number (which ranged from 
1 to 400). I also included interactions between all fixed effects in my 
model. I included a random intercept term for participants (who may 
have entered my study with different thresholds) and allowed slopes to 
vary randomly by trial number for each participant. The inclusion of 
random intercepts significantly improved model fit relative to the 
baseline model, χ2(2) = 1395.20, p < 0.001, as did the inclusion of 
random slopes, χ2(2) = 590.95, p < 0.001. Additionally, the inclusion of 
the three-way interaction between condition, trial number, and actual 
color significantly improved model fit, χ2(1) = 14.61, p < 0.001. 

The generalized linear mixed model revealed that a Condition X 

Actual Color X Trial Number X Range interaction predicted participants’ 
identifications, b = 14.01, SE = 0.37, z = 37.96, p < 0.001, 95% CIb 
[13.29, 14.74], RGLMM(c)

2 = 0.86. Fig. 4 shows the percentage of dots at 
each point along the continuum that participants identified as blue on 
the initial 200 trials and on the final 200 trials. When the range of stimuli 
was fixed, shown in the two left panels, participants only called a wider 
range of colors blue in the final trials when the prevalence of blue dots 
decreased over time, replicating the results of Study 1. When the range 
of blue colors participants saw was extended over time but the preva
lence of blue stayed the same, shown in the upper right panel, partici
pants instead called a narrower range of colors blue in the final trials 
compared to the earlier trials. Crucially, when the range of colors was 
extended over time and the prevalence of blue decreased, as in the lower 
right panel, participants did not call a wider or narrower range of colors 
blue in the final trials compared to the initial trials. In other words, 
extending the range of stimuli eliminated the prevalence decrease’s ef
fect on judgments and caused participants to maintain their original 
color thresholds, even when blue dots became rare. In Supplemental 
Appendix C, I report a computational modeling procedure of these data 
similar to that performed for Study 1, which suggests that the same 
Range-Frequency Model which best described the results of Study 1 can 
also do so for Study 2. 

5. General discussion 

In this paper, I have attempted to provide evidence for a computa
tional mechanism that can explain prevalence-induced concept change. 
In Study 1, decreasing the prevalence of blue dots caused observers to 
call a wider range of colors blue, replicating the findings of Levari et al. 
(2018). A comparison of several plausible computational models sug
gested that the process that best characterized the results was Range- 
Frequency Theory, a weighted compromise between the frequency 
and range of recently seen stimuli. Finally, in Study 2, an intervention 
designed with this mechanism in mind successfully eliminated 
prevalence-induced concept change by increasing the range of stimuli as 
they became rare. 

5.1. Limitations and future directions 

Many of the conclusions about the meaning and implications of these 
findings rest on the assumption, supported by the computational models 
presented here, that Range-Frequency Theory is a good candidate 

Fig. 2. Bayesian Model Selection of Human Data in the Decreasing Prevalence Condition of Study 1. 
Protected exceedance probability (PXP) scores (y-axis) are shown for color identification data from the subjects in the Decreasing Prevalence Condition of Study 1, fit by eight 
different models (x-axis). 
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mechanism to describe how humans implement prevalence-induced 
concept change on a cognitive level. However, in this paper I have 
only explored a small subset of the possible mechanisms that could 
predict similar effects, and only for one kind of task, color identification. 
Many sophisticated models of contextual perception and valuation exist 
in the cognitive sciences. For example, in Haubensak (1992), judgments 
are made using a scale centered on stimulus values presented early on in 
a sequence, which can produce judgment effects that appear driven by 
frequency, simply because the initial values will also typically be the 
most frequent over time. In Decision by Sampling (Stewart, Chater, & 
Brown, 2006), no explicit value of stimuli is directly computed, and 
valuations come from comparisons with local context. It is possible that 
such a model or another model entirely (e.g. Wilson, 2018) would better 
predict the findings presented here, or previously documented preva
lence effects in other domains such as moral judgment. Bhui and 
Gershman (2018) have recently argued that Decision by Sampling and 
Range-Frequency Theory are in fact closely related formulations of the 

principle of efficient coding in valuation. This convergence of existing 
theories of contextual effects on judgment lends support to the possi
bility that prevalence-induced concept change is driven by some 
implementation of efficient coding in neural architecture. Hopefully, the 
findings presented here can help inform future research to further refine 
our understanding of the computational and neural processes that pro
duce contextual effects in many different domains, particularly in cases 
like this one, where multiple theories plausibly explain the findings in 
question. 

5.2. Concluding remarks 

As Levari et al. (2018) note, the fact that nominally fixed concepts 
are susceptible to prevalence-induced change may have troubling con
sequences. One such consequence is that decision makers may find it 
difficult to tell when undesirable things are in fact becoming less com
mon over time. Governments, institutions, and organizations seek to 

Fig. 3. Choice behavior of fitted models on the color identification task in Study 1. 
The x-axes show the dot’s objective color and the y-axes show the percentage of trials on which simulated agents from each model (solid lines) or actual human participants from 
Study 1 (dashed lines) identified that color as blue. Fitted lines were computed as binomial GLMs. 
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identify problems so that they can then take action to decrease their 
future prevalence. IRB reviewers, for example, seek to identify unethical 
research projects not only to keep them from being executed, but also to 
reduce the number of unethical projects that researchers propose in the 
future. When researchers respond precisely as reviewers hope, reviewers 
may unwittingly expand their concepts of unethicality and start reject
ing proposals that they would earlier have accepted, effectively “moving 
the goalposts” of their ethical standard. This phenomenon is not limited 
to IRBs, and may plague the well-meaning enforcers of many policies 
that require people to ameliorate the thing they are attempting to assess. 

Another possible consequence is that observers may quickly become 
desensitized to problems when they proliferate. For example, if a busi
ness is attempting to reduce corruption or other unethical practices, any 
dramatic increase in those practices could lead to relaxed standards for 
what counts as an ethical violation. In this case, the simple fact of un
ethical behavior growing more prevalent would lead to more ethical 
lapses being forgiven, a well-known finding in research on contextual 
effects in ethical and unethical behavior (Aldrovandi, Wood, & Brown, 
2013; Gino & Bazerman, 2009; Marsh & Parducci, 1978). 

How could an understanding of Range-Frequency theory help keep 
judgments consistent in domains where changes in prevalence can 
wreak havoc on standards? Perhaps the simplest application of the re
sults of Study 2 would be to give people referents to keep in mind that 
are tailored to the current prevalence of the stimuli they need to judge. 
For example, an IRB officer could be periodically shown some examples 
of extremely unethical studies for comparison when the prevalence of 
unethical study proposals is low. If the prevalence increases, they could 
then instead compare submissions to examples of moderately unethical 
studies. This approach has the disadvantage of requiring real-time 
adjustment of referents based on changing prevalence, which in
stitutions may be unable to precisely track over time. Future work 
should investigate whether consistently maintaining a fixed or variable 
range of comparators can preemptively prevent prevalence from influ
encing judgments in undesirable ways. Hopefully, range extension can 
be added to the presence or absence of feedback (Lyu, Levari, Nartker, 
Little, & Wolfe, 2021) as a useful tool for policymakers and practitioners 
who wish to keep evaluations consistent over time, even in the face of 
prevalence shifts. 
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(Appendix A) Instructions and Post-Task Questions for Studies 1 and 2 

Study 1 Instructions 
 
Welcome to this study! We’re interested in studying how people perceive and identify colors. 
In this task, you will see dots presented on the screen one at a time, in a variety of colors. Your 
task in this study will be to identify blue dots. 
When you see a blue dot on the screen, press the “blue” key. For all other dots, press the “not 
blue” key. 
The dots will be presented in series with breaks in between. This means that you will see a series 
of dots, have a short break, and then another series of dots, until you have seen 16 series. 
Some of the series you see may have a lot of blue dots, and other may have only a few. There’s 
nothing for you to count or keep track of -- your only task is to identify blue dots. 
You should do your best to answer quickly and accurately during the study. However, if you 
make a mistake and hit the wrong button at any point, just keep going. 
Now you will complete a brief practice series so you can get used to the task. 
You have now completed the practice series. If you have any questions, you can ask the  
experimenter now.  
Otherwise, you're ready to begin the study. 
 

Study 1 Post-task questionnaire 
 

Thanks for participating in the study! Please answer a few last questions before you go. 
 
How old are you? 
 
Please indicate your gender: 
❍ Male (1) 
❍ Female (2) 
❍ Prefer not to answer (3) 
 
Did you find the task easy or difficult? 
❍ Very easy (1) 
❍ Easy (2) 
❍ Somewhat Easy (3) 
❍ Neutral (4) 
❍ Somewhat Difficult (5) 
❍ Difficult (6) 
❍ Very Difficult (7) 
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Are you right or left handed? 
❍ Right handed (1) 
❍ Left handed (2) 
 
Do you wear corrective lenses? If so, are you wearing them right now? 
❍ Yes, but I'm not wearing them now (1) 
❍ Yes, and I am wearing them now (2) 
❍ No, I'm don't wear corrective lenses (3) 
 
Is English your only native language? 
❍ Yes (1) 
❍ No, English is not my native language (2) 
❍ No, I spoke English and other languages growing up (3) 
 
What do you think this study was about? 
 
Do you think that it became easier or harder to find blue dots as the study progressed? 
❍ It became easier to find blue dots as the study progressed (1) 
❍ It became harder to find blue dots as the study progressed (2) 
❍ It was about the same throughout the study (3) 
❍ I'm not sure (4) 

 
Do you feel that the amount of blue dots in each series changed during the study? 
❍ No, there were the same number of blue dots throughout the study (1) 
❍ Yes, there were fewer blue dots as the study went on (2) 
❍ Yes, there were more blue dots as the study went on (3) 
❍ I'm not sure (4) 

 
We want to get a sense of how many blue dots you think you saw at different times in the study. 
Please indicate, using the options below, your impressions about what proportion of the dots you 
saw were blue.  If you have no idea, please check the box labeled "Not sure" instead of using the 
slider. 

______ In the first few series, I saw... (1) 
______ The the middle few series, I saw... (2) 
______ In the last few series, I saw... (3) 

 
By the end of the study, do you think that your definition of what counted as a "blue" dot 
changed? 
❍ No, I think that my definition of what counted as a blue dot did not change during the study. 

(1) 
❍ Yes, I think my definition of what counts as a blue dot expanded -- I counted a wider range 
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of colors as blue at the end of the study compared to the beginning of the study. (2) 
❍ Yes, I think my definition of what counts as a blue dot narrowed -- I counted a smaller range 

of colors as blue at the end of the study compared to the beginning of the study. (3) 
❍ I'm not sure if my definition changed (4) 
❍ I don't understand this question (5) 
 
If you have any other comments about the study, please let us know here: 
 
 

Study 2 Instructions 
 
Welcome to this study! We’re interested in studying how people perceive and identify colors. 
In this task, you will see dots presented on the screen one at a time, in a variety of colors. Your 
task in this study will be to identify blue dots. 
When you see a blue dot on the screen, press the “blue” key. For all other dots, press the “not 
blue” key. 
The dots will be presented in series with breaks in between. This means that you will see a series 
of dots, have a short break, and then another series of dots, until you have seen 8 series. 
Some of the series you see may have a lot of blue dots, and other may have only a few. There’s 
nothing for you to count or keep track of -- your only task is to identify blue dots. 
You should do your best to answer quickly and accurately during the study. However, if you 
make a mistake and hit the wrong button at any point, just keep going. 
Now you will complete a brief practice series so you can get used to the task. 
You have now completed the practice series. If you have any questions, you can ask the  
experimenter now.  
Otherwise, you're ready to begin the study. 
 
 

 
Study 2 Post-task questionnaire 

 
Thanks for participating in the study! Please answer a few last questions before you go. 
 
How old are you? 
 
Please indicate your gender: 
❍ Male (1) 
❍ Female (2) 
❍ Prefer not to answer (3) 
 



 S5 

Did you find the task easy or difficult? 
❍ Very easy (1) 
❍ Easy (2) 
❍ Somewhat Easy (3) 
❍ Neutral (4) 
❍ Somewhat Difficult (5) 
❍ Difficult (6) 
❍ Very Difficult (7) 
 
Are you right or left handed? 
❍ Right handed (1) 
❍ Left handed (2) 
 
Do you wear corrective lenses? If so, are you wearing them right now? 
❍ Yes, but I'm not wearing them now (1) 
❍ Yes, and I am wearing them now (2) 
❍ No, I'm don't wear corrective lenses (3) 
 
Is English your only native language? 
❍ Yes (1) 
❍ No, English is not my native language (2) 
❍ No, I spoke English and other languages growing up (3) 
 
What do you think this study was about? 
 
Do you think that it became easier or harder to find blue dots as the study progressed? 
❍ It became easier to find blue dots as the study progressed (1) 
❍ It became harder to find blue dots as the study progressed (2) 
❍ It was about the same throughout the study (3) 
❍ I'm not sure (4) 

 
Do you feel that the amount of blue dots in each series changed during the study? 
❍ No, there were the same number of blue dots throughout the study (1) 
❍ Yes, there were fewer blue dots as the study went on (2) 
❍ Yes, there were more blue dots as the study went on (3) 
❍ I'm not sure (4) 

 
We want to get a sense of how many blue dots you think you saw at different times in the study. 
Please indicate, using the options below, your impressions about what proportion of the dots you 
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saw were blue.  If you have no idea, please check the box labeled "Not sure" instead of using the 
slider. 

______ In the first few series, I saw... (1) 
______ The the middle few series, I saw... (2) 
______ In the last few series, I saw... (3) 

 
Do you feel that the range of colors in each series changed during the study?" 
❍ No, there was the same range of colors throughout the study (1) 
❍ Yes, there were was a wider range of colors as the study went on (2) 
❍ Yes, there was a narrower range of colors as the study went on (3) 
❍ I'm not sure (4) 
 
By the end of the study, do you think that your definition of what counted as a "blue" dot 
changed? 
❍ No, I think that my definition of what counted as a blue dot did not change during the study. 

(1) 
❍ Yes, I think my definition of what counts as a blue dot expanded -- I counted a wider range 

of colors as blue at the end of the study compared to the beginning of the study. (2) 
❍ Yes, I think my definition of what counts as a blue dot narrowed -- I counted a smaller range 

of colors as blue at the end of the study compared to the beginning of the study. (3) 
❍ I'm not sure if my definition changed (4) 
❍ I don't understand this question (5) 
 
If you have any other comments about the study, please let us know here: 
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(Appendix B) Recovery of simulated data in the control condition of Study 1 

Table B.1: Recovery of simulated data in the control condition of Study 1 
 

 
Model used to fit responses 

Normal 
CDF MAP Range-

Frequency Window AVC Range 
only 

Frequency 
only 

Beta 
Binomial 

M
od

el
 u

se
d 

to
 g

en
er

at
e 

re
sp

on
se

s  

Normal 
CDF 0.02 0.02 0.35 0.02 0.02 0.15 0.39 0.02 

MAP 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 

Range-
Frequency 0.03 0.02 0.81 0.06 0.02 0.02 0.02 0.02 

Window 0.76 0.07 0.02 0.07 0.02 0.02 0.02 0.02 

AVC 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 

Range only 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Frequency 
only 0.11 0.09 0.26 0.12 0.09 0.13 0.11 0.09 

Beta 
Binomial 0.05 0.05 0.17 0.50 0.05 0.07 0.07 0.05 

 

Protected exceedance probabilities in model comparison for each fitted model (columns) and the 

actual generative model of the simulated data (rows). Highest values for each model are bolded. 

 

(Appendix C) Computational modeling of Study 2 data 

Here I report a computational modelling analysis for Study 2, in which the Range-

Frequency Model which best predicted the data in Study 1 is compared to a control model to see 

which best predicts the behavioral results from Study 2. I first use both models to simulate data 

in all four conditions in the color identification task in Study 2, and confirm that each model can 

not only accurately estimate the true simulation starting parameters, but also recover its own 
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simulated responses better than the other model. Then, I fit both models to the data from Study 2, 

using Bayesian Model Selection to determine which model best accounts for actual human 

responses in the task. 

Model specifications 

 The models used are Models 1 (Normal CDF) and Model 3 (Range-Frequency) as 

described in the main text. 

Generation of simulated data 

Data for 100 simulated agents in the color identification task from Study 2 (25 in each 

condition) were generated in MATLAB from each of the two models being tested. The true 

parameters for each agent were randomly sampled from uniform distributions. The parameter 

specifications were the same as those described in the main text. Each agent completed 400 

trials. I then used a trial-level model fitting procedure with maximum likelihood estimation to 

recover the true generative model and parameters of the simulated data. 

Recovery of simulated data 

Optimized parameters for each simulated agent were estimated with the MATLAB 

package mfit (Gershman, 2015/2021). Five starting values were uniformly sampled for each 

parameter, with the same bounds as used for data generation (described above). 

To test the ability of each model to recover its own simulated responses, I calculated a 

protected exceedance probability for the simulated responses from each of the two models, fit in 

turn by each of the two models (a total of 4 model fits). I used the mfit package to estimate the 

protected exceedance probability with the Laplace approximation of the marginal likelihoods of 

the fitted models. Responses simulated from each model were fit in turn by each of the two 

models. As Table C.1 shows, each model performed best at fitting the responses generated by its 



 S9 

own algorithm, suggesting that these models would be distinguishable when fitting them to 

actual human data.  

------------------------------------------------- 

Table C.1: Recovery of simulated data in Study 2 

 
Model used to fit responses 

Normal CDF Range-Frequency 

M
od

el
 u

se
d 

to
 

ge
ne

ra
te

 
re

sp
on

se
s Normal CDF 0.98 0.02 

Range-Frequency 0.00 1.00 

 

Protected exceedance probabilities in model comparison for each fitted model (columns) and the 

actual generative model of the simulated data (rows). Highest values for each model are bolded. 

------------------------------------------------- 

I also used each model to estimate the parameters for each of the 100 simulated 

participants. Both models were reasonably accurate at estimating the true parameters of the 

simulated agents from that generative model (rmean = 0.85). Taken together with the Bayesian 

model selection for the simulated data, this result suggests that the predicted responses generated 

by the two models tested here are distinct, and that approximate recovery of those generative 

models, as well as estimation of the model parameters for each individual agent, is feasible.  

Parameter estimation for actual human data 

Optimized parameters for all 102 human subjects from Study 2 were again estimated 

using mfit. Five uniformly sampled starting values were used for each parameter. The sampling 

distributions for each parameter were the same as in the simulation and recovery procedure 

described above. For all models, uniform priors were set on each parameter. 
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Model comparison for human subjects 

I used Bayesian Model Selection as implemented in the mfit package in order to compare 

the models to see which predictions best fit actual human data. Figure C.1 shows the protected 

exceedance probabilities of the eight models. The Range-Frequency model outperformed the 

Normal CDF model in fitting the data across all subjects (pxp = 0.99, BOR = 0.02), and in the 

three conditions in which prevalence and/or range were manipulated: the Stable 

Prevalence/Extending Range condition (pxp = 0.74), the Decreasing Prevalence/Fixed Range 

condition (pxp = 0.66), and the Decreasing Prevalence/Extending Range condition (pxp = 0.99). 

Aggregating BIC values as an alternative form of model comparison produced the same pattern 

of results. Figure C.2 shows the choice behavior of each model in each condition of Study 2. 

Unlike the Normal CDF model, simulated responses from the Range-Frequency model showed a 

shift in decision thresholds during the task in the Stable Prevalence/Extending Range condition 

and the Decreasing Prevalence/Fixed Range condition, similar to what was observed in actual 

human subjects. 

------------------------------------------------- 
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Figure C.1: Bayesian Model Selection of Human Data in Study 2 

 

Protected exceedance probability (PXP) scores (y-axis) are shown for color identification data 

from the subjects each condition of Study 2, fit by two different models (x-axis).  

------------------------------------------------- 
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------------------------------------------------- 

Figure C.2: Choice behavior of fitted models on the color identification task in Study 2 

 

The x-axes show the dot’s objective color (i.e., its location on the continuum) and the y-axes 

show the percentage of trials on which simulated agents from each model (solid lines) or actual 

human participants from Study 2 (dashed lines) identified that color as blue. Fitted lines were 

computed as binomial GLMs. 

------------------------------------------------- 
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